Timelike rotational surfaces of elliptic, hyperbolic and parabolic types in Minkowski space E41 with pointwise 1-type Gauss map
نویسندگان
چکیده
منابع مشابه
To Specify Surfaces of Revolution with Pointwise 1-type Gauss Map in 3-dimensional Minkowski Space
In this paper, by the studying of the Gauss map, Laplacian operator, curvatures of surfaces in R 1 and Bour’s theorem, we are going to identify surfaces of revolution with pointwise 1-type Gauss map property in 3−dimensional Minkowski space. Introduction The classification of submanifolds in Euclidean and Non-Euclidean spaces is one of the interesting topics in differential geometry and in this...
متن کاملHelicoidal Surfaces and Their Gauss Map in Minkowski 3-space
The helicoidal surface is a generalization of rotation surface in a Minkowski space. We study helicoidal surfaces in a Minkowski 3-space in terms of their Gauss map and provide some examples of new classes of helicoidal surfaces with constant mean curvature in a Minkowski 3-space.
متن کاملWeierstrass Representation for Timelike Minimal Surfaces in Minkowski 3-space
Using techniques of integrable systems, we study a Weierstraß representation formula for timelike surfaces with prescribed mean curvature in Minkowski 3-space. It is shown that timelike minimal surfaces are obtained by integrating a pair of Lorentz holomorphic and Lorentz antiholomorphic null curves in Minkowski 3-space. The relationship between timelike minimal surfaces and bosonic Nambu-Goto ...
متن کاملBjorling Problem for Timelike Surfaces in the Lorentz-Minkowski Space
We introduce a new approach to the study of timelike minimal surfaces in the Lorentz-Minkowski space through a split-complex representation formula for this kind of surface. As applications, we solve the Björling problem for timelike surfaces and obtain interesting examples and related results. Using the Björling representation, we also obtain characterizations of minimal timelike surfaces of r...
متن کاملL_1 operator and Gauss map of quadric surfaces
The quadrics are all surfaces that can be expressed as a second degree polynomialin x, y and z. We study the Gauss map G of quadric surfaces in the 3-dimensional Euclidean space R^3 with respect to the so called L_1 operator ( Cheng-Yau operator □) acting on the smooth functions defined on the surfaces. For any smooth functions f defined on the surfaces, L_f=tr(P_1o hessf), where P_1 is t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Filomat
سال: 2015
ISSN: 0354-5180,2406-0933
DOI: 10.2298/fil1503381b